Finite element convergence for the Darwin model to Maxwell's equations
نویسندگان
چکیده
In three dimensional polyhedral domains with a Lipschitz continuons boundary, we denve the //(curl , Q ) and //(curl, div , Q ) var lattonal formulations for the Darwin model of approximation to Maxwell's équations and prove the well-posedness of the variational Systems Then Nedelec s and Standard fini te element methods are used io solve two kinds of variational ptoblems Though symmetrie bilinear forms in the vanatwnal Systems fail to define full nornis equivalent to the Standard norms in the finite element subspaces of / / ( cur l ,£?) and H( curl, div , Q ), we can stül prove the finite element convergente and obtain the enoi estimâtes, without requiring the physical domains to be convex Résume —Dans des domaines polyhédnques tridimensionnels de frontieie Lipschtt? conti nue, on calcule les formulations variationnelles dans / /(rot ,Q) et / / (div, rot , Q) du modèle de Darwin qui est une approximation des équations de Maxwell On prouve que les problèmes var lationnels sont bien poses, puis, une famille régulière de triangulations (2T') /( étant donnée, on utilise les éléments finis de type Nédélec et de type standard poiu discretiser ces problèmes On démontre la convergence des methodes d'éléments finis et des estimations d'erreur sont obtenues En particulier, dans le cas ou l'on ne peut pas prouve) l'équivalence des formes bilinéaires symétriques des problèmes variatwnnels et des normes usuelles indépendamment de h, on obtient ces résultats en utilisant une méthode légèrement modifiée de lésohttion des pfoblemes de point-selle
منابع مشابه
Solution of Wave Equations Near Seawalls by Finite Element Method
A 2D finite element model for the solution of wave equations is developed. The fluid is considered as incompressible and irrotational. This is a difficult mathematical problem to solve numerically as well as analytically because the condition of the dynamic boundary (Bernoulli’s equation) on the free surface is not fixed and varies with time. The finite element technique is applied to solve non...
متن کاملDiscrete compactness and the approximation of Maxwell's equations in R3
We analyze the use of edge finite element methods to approximate Maxwell’s equations in a bounded cavity. Using the theory of collectively compact operators, we prove h-convergence for the source and eigenvalue problems. This is the first proof of convergence of the eigenvalue problem for general edge elements, and it extends and unifies the theory for both problems. The convergence results are...
متن کاملEdge Element Methods for Maxwell's Equations with Strong Convergence for Gauss' Laws
In this paper we propose and investigate some edge element approximations for three Maxwell systems in three dimensions: the stationary Maxwell equations, the time-harmonic Maxwell equations and the time-dependent Maxwell equations. These approximations have three novel features. First, the resulting discrete edge element systems can be solved by some existing preconditioned solvers with optima...
متن کاملHodge decomposition for divergence-free vector fields and two-dimensional Maxwell's equations
We propose a new numerical approach for two-dimensional Maxwell's equations that is based on the Hodge decomposition for divergence-free vector fields. In this approach an approximate solution for Maxwell's equations can be obtained by solving standard second order scalar elliptic boundary value problems. This new approach is illustrated by a P 1 finite element method.
متن کاملApplication of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995